

Co-funded by
the European Union

Green Career Guide

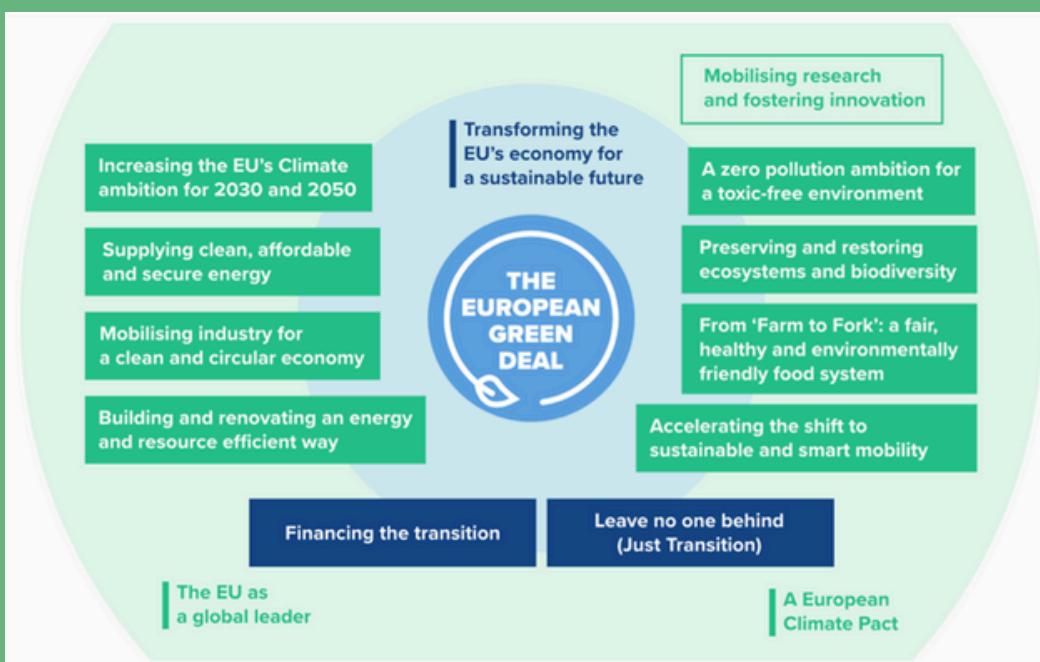
Green Transition for Economics and
Administrative Science (EAS) Students: Green Jobs,
Green Skills, and Green Careers

BURSA ULUDAĞ
UNIVERSITY

UNIVERSIDAD
DE GRANADA

Green Career Guide

1. Introduction


- The European Union is currently undergoing a transition towards a climate-neutral economy by 2050. This paradigm shift goes beyond a mere peripheral environmental policy issue: it represents a fundamental rethinking of Europe's economic, institutional, and environmental structure.
- For students and future professionals in Economics and Administrative Sciences (EAS), the European Green Deal and its collection of regulations constitute the new economic framework.
- The Green Deal must be understood as the EU's new growth strategy.
- The Green Deal's premise is the decoupling of economic growth from the use of natural resources, and its goal is to transform the EU into a modern, resource-efficient, and competitive economy.
- It is no longer possible to understand corporate strategy, financial accounting, risk management, or fiscal policy without a deep understanding of these business areas through the lens of sustainability.

- The analysis of green jobs and green careers is relevant and necessary.
- The job market is responding to these regulatory signals with unprecedented demand for new professional profiles related to economics and business management.
- Green jobs have transcended the boundaries of environmental engineering and ecology to take root in the heart of corporate finance, auditing, supply chain management, and macroeconomic analysis.
- Companies need economists and managers who can model the impact of carbon pricing on competitiveness, accountants who can perform double materiality assessments under the CSRD, and investment bankers who know how to structure green bonds aligned with the European Taxonomy.
- This guidebook offers a comprehensive analysis of green jobs and green careers: it is specifically designed to bridge the gap between high-level EU policy and practical professional applications, providing the essential content of an academic guidebook oriented towards future business managers.

The EU Green Deal

- At the European Union level, companies are subject to a comprehensive and coherent set of environmental regulatory frameworks that govern their activities, investments, reporting, and legal compliance.
- These frameworks are articulated in strategies, regulations, and directives (mandatory after transposition in each EU Member State).

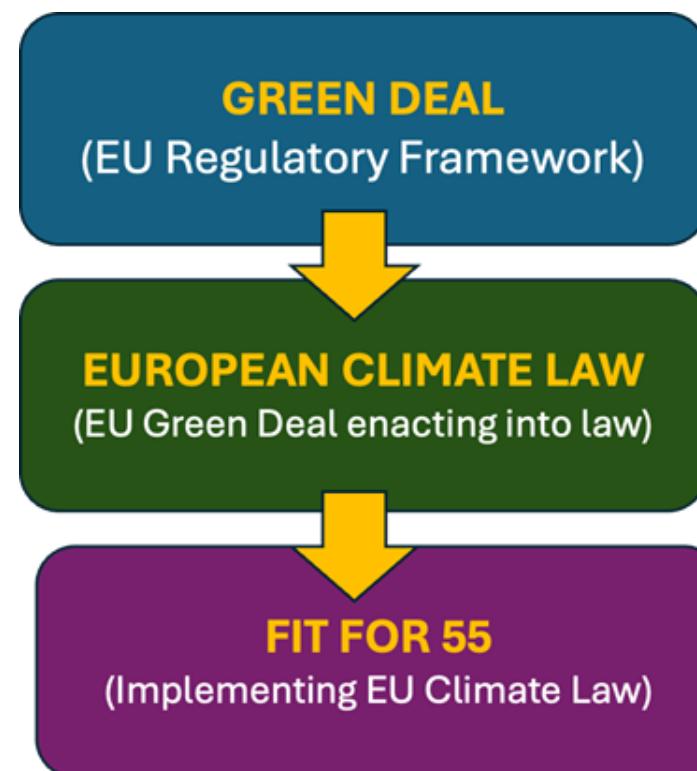
Source: European Environmental Bureau (<https://eeb.org/wp-content/uploads/2025/05/The-European-Green-Deal-Knowledge-Brief.pdf>)

- The European Green Deal, presented in December 2019, is the broad regulatory framework that serves as an umbrella for all other EU environmental regulations.
- From an economic theory perspective, the Green Deal represents a substantial intervention to address market failures related to negative externalities (pollution and carbon emissions) and constitutes a significant shift in Member States' fiscal policy and public investment.
- Its strategy is not sectoral but cross-cutting, covering eight main policy areas including clean energy, sustainable industry, building renovation, the "farm to fork" strategy, and the elimination of pollution.
- The implementation of the Green Deal involves a large-scale reallocation of capital and labor.
- Sectors such as steel, cement, and automotive must undergo a mandatory technological conversion, as Europe's future competitiveness will depend on its ability to lead in clean technologies (i.e., green hydrogen, batteries, circular economy), which in turn will redefine comparative advantages in international trade.

The European Climate Law Regulation

- The Green Deal has been enacted into law as the European Climate Law (Regulation (EU) 2021/1119).
- This regulation represents the legal codification of the EU Green Deal, making it a binding legal obligation for the 27 Member States and EU institutions. Its central mandate is to achieve net-zero greenhouse gas (GHG) emissions by 2050 and negative emissions thereafter.
- For business analysis and economic forecasting, this law is fundamental because it removes regulatory uncertainty by establishing (1) a binding interim target of at least 55% net emissions reduction by 2030 compared to 1990, and (2) a process for setting a target for 2040 (with a recent proposal of 90%).

- This law also institutionalizes climate legislation by creating the European Scientific Advisory Board on Climate Change.
- This introduces independent scientific oversight into economic policymaking, meaning that business and public decisions will increasingly be subject to empirical data scrutiny.
- Companies can no longer simply set marketing targets: they must align their emissions reduction trajectories with what the law and science dictate is necessary (i.e., Science-Based Targets).


The “Fit for 55” package

It is a set of interconnected legislative proposals designed to align EU legislation with the 55% reduction target for 2030.

Some of the measures included in “Fit for 55” that affect businesses are:

- Emissions Trading Scheme (EU ETS): this scheme puts a price on carbon, internalizing environmental externalities. This has direct implications for the cost structure of any logistics, real estate, or industrial company.
- Carbon Border Adjustment Mechanism (CBAM): acts as a climate tariff, taxing imports of carbon-intensive products (e.g., steel, aluminum, cement, fertilizers, hydrogen) from countries with more lax climate policies. This is vital to prevent “carbon leakage” or the relocation of companies to avoid environmental costs and reconfigure global supply chains.
- Social Climate Fund: collects revenue from the EU ETS to mitigate the regressive impact of carbon prices on vulnerable households (intersection between economic efficiency and social equity/redistribution).

- The European regulatory framework on environmental matters is complemented by additional regulations closely related to green jobs and the green skills of (future) EAS professionals, which will be developed in later sections of this academic guidebook.



The European Regulatory System for Sustainability

Career Relevance for Economics and Administrative Science Graduates

- For prospective graduates in EAS, the EU Green Deal, the European Climate Law, and the "Fit for 55" package redefine corporate strategy.
- This regulation drives demand for strategic consultants capable of adapting business models to a low-carbon economy, climate risk analysis, and regional economic development.
- Economists are essential for modeling the impact of these policies on competitiveness and employment, while managers must lead corporate innovation toward sustainability.
- For instance, the EU ETS requires economists to calculate internal "carbon costs" and design long-term investment strategies that avoid stranded assets*.

* Stranded assets are investments that lose value due to regulation, such as a fossil fuel power plant or a fleet of combustion vehicles.

Roles and/or tasks

Several roles and/or tasks related to environmental aspects of companies that future EAS professionals must be in charge of are as follows:

- The role focused on institutional relations and corporate lobbying.
- The role of carbon traders and supply chain analysts is to manage the CBAM.
- Specialists in green logistics and fleet management (due to the phase-out of combustion engines).
- The role in compliance, ensuring companies adhere to mandatory decarbonization pathways.
- Tax specialists are vital for navigating new energy taxation.
- The role of managing the Social Climate Fund, combining public economics and social welfare.
- Environmental Risk Manager at the insurance sector to assess financial exposure to environmental liabilities.
- Rating agencies and auditors demand the role of (accredited) environmental reviewers. Credit analysts assess whether issuing a green bond improves a company's risk profile.
- Financial advisors and asset managers in private banking must understand the SFDR taxonomy to recommend financial products to clients with sustainability preferences.

2. Job Market Insights

- In addition to the EU Green Deal, the European Climate Law, and the "Fit for 55" package, other regulatory bodies exist in the EU that are inherent to the business activities and, thus, are closely related to the professional labor of economists and managers.
- The table summarizes these EU regulatory bodies.

Summary of EU regulatory bodies concerning business and sustainability

Scope	Regulation	Objective/Definition
Circular Economy	Circular Economy Action Plan	This plan seeks to transform the production model from "take-make-dispose" to a circular one. It focuses on sustainable product design, the "right to repair," and
	EU Taxonomy	This regulation is a classification system defining which economic activities are "environmentally sustainable." An activity must substantially contribute to one of six
	Corporate Sustainability Reporting Directive (CSRD)	The CSRD mandates large and listed companies to publish detailed, audited sustainability reports under European Standards (ESRS). It introduces the concept of
	Strategy for Financing the Transition to a Sustainable Economy	This EU framework strategy seeks to channel private investment toward the climate transition, acknowledging that public funds are insufficient. It rests on four pillars:
	Sustainable Finance Disclosure Regulation	The SFDR regulates how financial market participants (investment funds, pensions, insurers) disclose sustainability information. It classifies financial products
Finances	Green Bonds Standard	The EuGB is a voluntary standard that establishes a "gold standard" for issuing green bonds in the capital market. It requires that the funds raised be allocated to
	Environmental Liability Directive	The ELD applies the "polluter pays" principle to prevent and remedy damage to natural environment: economic operators are financially responsible for restoring the
Responsibility		

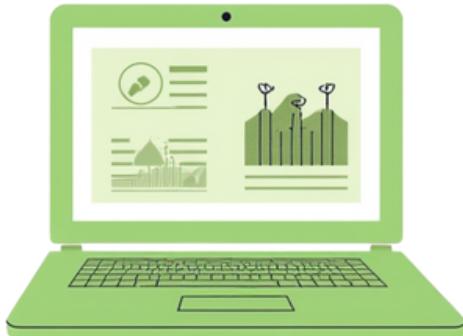
Source: Own elaboration

2. Job Market Insights

- International demand for green skills is growing rapidly in the labor market and is becoming particularly relevant for EAS professionals.
- According to the updated "Climate Talent Stocktake" elaborated by the social media LinkedIn, job postings requiring at least one green skill accounted for about 7.7% of all offers in 2025, with a hiring rate for people with these skills up to 46.6% higher than the global average (LinkedIn, 2025), indicating a clear competitive advantage for those who possess them.
- The gap between demand and supply for green talent continues to widen, underscoring the urgency for professionals to acquire knowledge in sustainability, environmental management, and responsible business practices to remain competitive in a job market focused on ecological transition (LinkedIn, 2025).

Analysis of EU regulation reveals a trend that argues that sustainability is no longer a peripheral function of Corporate Social Responsibility (CSR) but has become integrated into European economic policy decisions. There is currently a significant gap in green competencies in the labor market for EAS professionals.

The market is saturated with generalist profiles: it lacks hybrid specialists who combine traditional business training with solid knowledge of sustainability.


Some of the new profiles that the labour market is looking for are:

- **Auditing and Accounting:** Specializing in CSRD and ESRS standards is currently the fastest route to growth.
- **Finance:** Mastering SFDR compliance and Green Bond structuring offers high remuneration in investment banking.
- **Management:** Develop skills in Circular Economy business models and supply chain due diligence (CSDDD).
- **Economics:** Focus on carbon pricing mechanisms (ETS/CBAM) and transition financing incentives.

This guidebook serves as essential reading for navigating this complex regulatory landscape, positioning EAS graduates at the forefront of the green economic transition.

3. Green Careers in EAS

- **Green occupation** refers to jobs that contribute to preserving or restoring the environment.
- **Green jobs** are roles that contribute to environmental protection, sustainability, and the efficient use of resources across economic activities.
- They are not limited to environmental sectors but are increasingly present in management, administration, finance, logistics, and operations.
- **Green jobs** combine economic performance with environmental and social responsibility.
- According to the project findings, **green jobs** require both technical knowledge and transversal skills such as strategic thinking and data analysis.
- Organizations increasingly recognize green jobs as essential to long-term competitiveness and regulatory compliance.

Definitions

- Green careers in economics and administration involve planning, policy design, regulatory oversight, financial analysis, and organizational management that explicitly aim to protect the environment, reduce resource use, and promote sustainable development. These roles contribute to decarbonization, resource efficiency, and the transition to a circular economy.
- In practice, **green jobs** cover a spectrum from direct environmental work (e.g., environmental auditing, energy efficiency) to green-adjacent roles in finance, policy, and administration that integrate sustainability goals into decision-making and operations.

3. Green Careers in EAS

Key Sectors

Policy and regulation

- Roles: environmental policy analyst, climate policy advisor, regulatory compliance officer, sustainability governance specialist.
- Focus: designing and evaluating policies that incentivize reduction of emissions, waste, and water use; integrating environmental considerations into public and private sector decision-making.

Finance and accounting for sustainability

- Roles: green finance analyst, carbon risk assessor, sustainability reporting specialist, ESG (environmental, social, governance) auditor, internal sustainability controller.
- Focus: aligning capital allocation with climate and resource-use objectives; measuring and reporting environmental performance; assessing climate-related financial risks.

3. Green Careers in EAS

Key Sectors

Corporate strategy and operations

- Roles: sustainability strategy manager, circular economy program lead, energy efficiency program coordinator, supply chain sustainability analyst.
- Focus: embedding environmental objectives into business strategy, procurement, and operations; tracking metrics like emissions, energy intensity, and material circularity.

Economics and market design

- Roles: environmental economist, carbon pricing analyst, energy market analyst, regulatory impact evaluator.
- Focus: modeling environmental externalities, analyzing impacts of carbon markets or subsidies, and advising on price signals that drive decarbonization.

3. Green Careers in EAS

Key Sectors

Administration and governance

- Roles: sustainability governance officer, ESG reporting coordinator, and compliance and risk manager with environmental remit.
- Focus: integrating environmental governance into boards, management reporting, and disclosure practices.

Current situation:

- Manufacturing, industry, and energy are the main sectors where green jobs are currently concentrated.
- Management-related sectors (consulting, finance, HR, marketing) are also strongly involved in sustainability activities.
- Transport, tourism, construction, and real estate show growing demand for green skills.
- IT and digital services support green transition through data analysis, reporting, and system design.
- Both public and private sectors are increasingly integrating sustainability into their core activities.

3. Green Careers in EAS

Integrated ESG and sustainability reporting

- Growing demand for professionals who can translate environmental performance into credible disclosures and investor communications; expertise in frameworks like GRI, SASB/ISSB, and integrated reporting is increasingly valuable.

Climate risk and resilience analytics

- Increasing need for economists and administrators who quantify physical and transition risks, model scenarios, and advise on adaptation investments and insurance strategies.

Circular economy policy and corporate practice

- Roles focused on material flows, product stewardship, extended producer responsibility, and waste-to-resource strategies within both public and private sectors.

Emerging Fields

Sustainable finance and green investment analysis

- Expansion of green bonds, sustainability-linked loans, and climate-aligned investment portfolios creates demand for specialists who assess project viability, risk, and alignment with environmental objectives.

Sustainable tourism governance and regional planning

- In contexts like Lithuania and broader Europe, opportunities exist in administering green tourism programs, visitor management, and funding mechanisms for sustainable infrastructure and biodiversity protection.

Public procurement for sustainability

- Administrators who design and manage procurement policies that favor low-emission goods, energy efficiency, and circular supply chains.

4. Green Career Opportunities

- Public sector green careers focus on environmental protection, sustainable development, and climate policy. These roles often involve planning, regulation, and community programs.

Key examples:

- Environmental Policy Analyst – develops laws and regulations to reduce pollution and protect natural resources.
- Sustainability Officer (Government)—designs programs for energy efficiency, waste reduction, and climate adaptation.
- Urban Planner—integrates green spaces, public transport, and sustainable infrastructure into city planning.
- Environmental Inspector—monitors compliance with environmental laws.
- Renewable Energy Project Coordinator—supports government-funded solar, wind, or bioenergy projects.

Public Sector Roles

Public sector roles shape national and local strategies that guide the entire green economy.

- Public administrations play a key role in implementing environmental laws and sustainability policies.
- Green jobs in the public sector focus on policy analysis, regulation monitoring, and compliance.
- Public organizations need green skills to manage sustainability programs and public projects.
- Environmental planning and sustainable procurement are growing responsibilities.
- The demand for green skills in public organizations is expected to increase in the coming years.

4. Green Career Opportunities

- The **private sector** offers a wide range of green jobs as companies shift toward sustainability and clean technologies.

Key examples:

- Sustainability Manager—leads corporate sustainability strategies and reporting.
- Energy Auditor – evaluates buildings and factories to improve energy efficiency.
- Environmental Engineer—designs solutions for waste management, water treatment, and pollution control.
- Green Product Designer—creates eco-friendly products using sustainable materials.
- Renewable Energy Technician—installs and maintains solar panels, wind turbines, and other clean energy systems.

Private Sector Roles

Businesses are major drivers of innovation, investment, and the adoption of green technologies.

- Private companies integrate green jobs into strategy, operations, and product development.
- Sustainability roles support compliance with environmental regulations and market expectations.
- Green jobs contribute to innovation, efficiency, and cost reduction.
- Organizations report strong needs for skills in innovation, risk management, and environmental assessment.
- The private sector shows higher demand for green skills than the public sector.

4. Green Career Opportunities

International Organizations

- Global institutions play a major role in climate action, environmental protection, and sustainable development.
- Careers here often involve research, policy development, and international cooperation.

Why does it matter?

- These organizations influence global standards and support sustainability projects worldwide.

Key examples:

- United Nations (UNEP, UNDP, FAO)—climate policy, biodiversity protection, sustainable agriculture.
- World Bank & IMF—financing green infrastructure and climate-resilient development.
- International Labour Organization (ILO)—research on green jobs and just transition.
- European Union (EU) institutions—environmental regulation, circular economy initiatives, and climate policy.
- NGOs (WWF, Greenpeace, IUCN)—conservation, advocacy, and community projects.

4. Green Career Opportunities

- **Green entrepreneurship** focuses on creating new businesses that solve environmental challenges while generating economic value.

Key examples:

- Renewable Energy Startups—solar installation companies, micro-wind systems, and energy storage solutions.
- Sustainable Agriculture & Food—organic farming, vertical farming, plant-based products.
- Circular Economy Businesses—recycling, upcycling, repair services, and zero-waste products.
- Green Technology Innovation—smart energy devices, eco-friendly materials, and carbon-tracking apps.
- Eco-Tourism Ventures—sustainable travel experiences and nature-based tourism.

Entrepreneurship in Green Business

Entrepreneurs accelerate innovation and create new markets for sustainable solutions.

5. Skills for Green Careers

- The shift towards a low-carbon economy and the increasing emphasis on sustainable development are reshaping labor markets and demand for skills.
- Green transformation will not happen without “green talent”, i.e., workers with the skills required for a greener economy. This means that every job will change and we will need to learn new skills.
- With the green transition, existing employment opportunities are becoming increasingly environmentally oriented, while at the same time new green job roles are emerging. This labour market transformation underlines the necessity for workers to acquire green competencies and skills.

- The term ‘green skills’ is used to describe roles that contribute to the development and support of a sustainable and resource efficient society.
- Green skills include both sector-specific knowledge—such as carbon measurement, sustainable finance, or environmental auditing—and broader competencies like critical thinking and systems thinking.
- With global demand for green talent rising faster than supply, students with green skills gain a competitive advantage in many fields including business, economics, public administration, and technology.
- Green skills empower learners not only to participate in the green transition but also to lead innovative solutions in their future careers.
- Green skills consist of soft skills, technical skills, and administrative competencies.

Soft Skills

- Soft skills play a crucial role in preparing students for the rapidly evolving landscape of green careers. These skills help students assess environmental challenges and propose innovative solutions.
- As organizations transition towards sustainability, they increasingly seek graduates who can communicate effectively, think critically, and collaborate across diverse teams.
- Green careers require not only technical knowledge but also the ability to understand complex systems, adapt to change, and lead environmentally responsible practices.

Soft Skills

Key soft skills for green careers include strong communication and teamwork abilities that enable students to work with multiple stakeholders on sustainability initiatives.

Multi-Stakeholder Communication

Effective communication is essential for advancing environmental solutions by engaging diverse stakeholders and clearly conveying complex sustainability issues to non-technical audiences, fostering collaboration and informed transitions to greener practices.

When students develop this skill, they can clearly communicate sustainability issues to diverse stakeholders, support collaborative environmental solutions, and contribute to informed transitions toward greener practices.

Teamwork

Since sustainable projects are often complex and involve many areas of expertise, the ability to collaborate effectively and share a common vision is critical.

Soft Skills

Analytical and problem-solving

- This skill is essential for understanding complex environmental challenges, interpreting sustainability data, and developing effective solutions that integrate ecological, social, and economic considerations.

Systems thinking

- It—an essential competency highlighted in international reports—allows learners to evaluate the broader environmental, economic, and social impacts of their decisions.

Soft Skills

Leadership

- Adaptability and change-management skills are crucial, as the green transition brings new policies, technologies, and organizational practices.
- Leadership and ethical awareness further support students in promoting sustainability within their future workplaces.
- Together, these soft skills empower students to actively participate in the green transition and make meaningful contributions to a low-carbon, resilient, and sustainable future.
- Strong leadership and the ability to inspire are essential to drive change and encourage others to adopt sustainable practices.

Leadership skills are needed to drive cultural change for a green economy, while influencing and guiding the transition as 'new technologies, behaviours and systems need embedding'.

Get across your passion for the environment.

Soft Skills

Education, communication, and change management

- In green careers, the ability to communicate sustainability concepts clearly and guide others through organizational change is an essential soft skill.
- Education communication involves explaining environmental challenges, sustainability goals, and new practices in a way that is accessible and engaging for different audiences—whether colleagues, stakeholders, or the broader community.
- Students with strong communication skills can raise awareness, support behavioural change, and inspire others to take part in sustainability initiatives.

Soft Skills

Change management is equally important, as green transformation requires shifts in organizational culture, processes, and mindsets.

Students must be able to help teams adapt to new sustainability policies, technologies, and expectations. This includes understanding how people respond to change, providing guidance throughout transitions, and fostering a supportive environment that encourages learning and collaboration.

Soft Skills

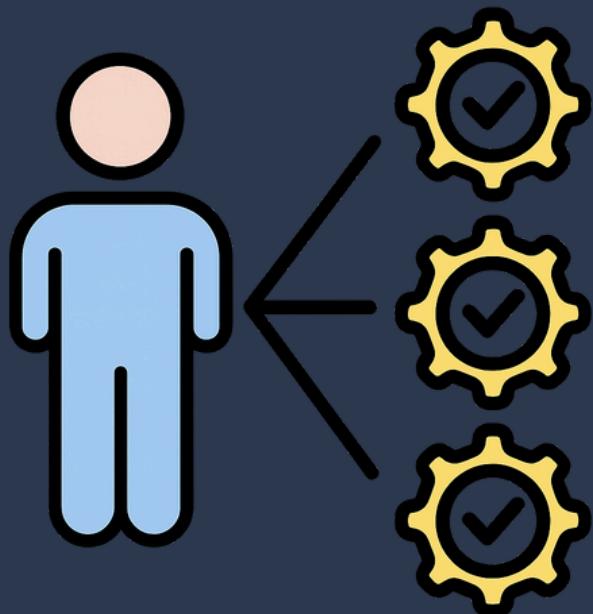
Cognitive competencies: environmental awareness and a willingness to learn about sustainable development

Cognitive competencies are essential for students preparing for green careers, as they form the foundation for understanding and responding to global environmental challenges.

Environmental awareness enables students to recognise the connections between human activities, natural systems, and the impacts of climate change. With this awareness, students can make informed decisions that support ecological balance and long-term sustainability.

Think Green. Learn Continuously.

Soft Skills


A willingness to learn about sustainable development reflects an open and proactive mindset. As sustainability practices, technologies, and regulations evolve, students must continuously update their knowledge and remain curious about new approaches.

This lifelong learning attitude helps them adapt to emerging trends, understand complex sustainability issues, and engage meaningfully in green transition efforts.

Technical Skills

Technical skills enable students to understand environmental challenges and apply practical solutions in professional settings.

Technical Skills

As organizations embrace sustainability commitments, there is a growing need for graduates who can work with environmental data, follow regulatory standards, and possess green technical skills in various areas. The areas most in need of technical skills include energy, sustainability, digital and data management, and environmental management.

Technical Skills

Energy

Renewable Energy Systems: Skills related to the design, installation, maintenance, and optimization of solar, wind, geothermal, and hydroelectric systems.

Energy Auditing: Skills related to analyzing energy consumption in buildings and industrial processes, identifying inefficiencies, and recommending energy-saving measures.

Smart Grids: Skills related to understanding advanced electrical grid technologies that optimize energy distribution and manage the integration of renewable sources.

Technical Skills

Sustainability research

Sustainability analysis and measurement are the analytical skills required to measure, manage, and report environmental impact.

Technical Skills

Digital and data management

- Skills in digital and data analytics will be required for the net-zero energy workforce across all areas.
- Data analysis and digital literacy are essential for monitoring energy use, waste streams, water management, and supply-chain impacts. Students with strong analytical skills can interpret sustainability metrics, model scenarios, and provide evidence-based recommendations for improvement.
- Ability to use software (ArcGIS, QGIS, etc.) to map, analyze, and visualize environmental data (soil quality, water resources, pollution spread, biodiversity).
- Using statistical software and simulation models to predict environmental trends, assess risks, and optimize resource management. (e.g., data processing with Python/R programming languages.)

Technical Skills

Environmental management

- Environmental auditing (including environmental impact assessment and carbon accounting)
- Environmental policy (including energy law and environmental law)
- Sustainable procurement
- Environmental finance

Technical Skills

Environmental auditing

A key technical competency is carbon accounting, which involves measuring greenhouse gas emissions, analysing carbon footprints, and reporting environmental impacts in line with international standards. Students also benefit from developing skills in sustainability reporting, including understanding regulatory requirements, disclosure practices, and the metrics used to assess environmental, social, and governance (ESG) performance.

Technical Skills

Environmental policy

Technical skills also extend to understanding environmental policies and regulations. Knowledge of environmental law, climate policies, and sustainable finance frameworks helps students evaluate how new rules influence business operations and strategic planning.

Staying up to date on local, national, and international environmental laws, regulations, and permitting processes (e.g., Climate Agreements).

Technical Skills

Sustainable procurement

Using scientific and data-driven tools to identify, measure, and prioritize environmental risks (water scarcity, emissions, deforestation) and social risks (child labor, human rights violations) in the supply chain.

Implementing Circular Economy principles, developing waste reduction strategies, optimizing recycling and reuse processes.

Knowledge of water quality testing, treatment technologies, and rainwater management systems to ensure the sustainable use of water resources.

Technical Skills

Environmental finance

Understanding and using financial products specifically designed to fund environmental projects.

- Green bonds
- Green credits

Environmental finance is a field that directs capital flows toward climate change mitigation and sustainability goals, combining traditional financial analysis skills with environmental metrics.

Administrative Competencies

Administrative competencies are critical for students aiming to lead and support sustainability efforts within organizations.

As green transformation accelerates, employers increasingly look for graduates who can manage projects, coordinate teams, and integrate sustainability principles into daily operations and long-term planning.

These skills encompass the organizational, legal, and financial management capabilities necessary to translate sustainability goals into concrete actions and successful projects.

**Lead the Change,
Manage Sustainably.**

Administrative Competencies

One of the most essential competencies is **project and programme management**, which enables students to plan, implement, and monitor sustainability initiatives effectively. This includes managing timelines, budgets, resources, and ensuring that environmental goals are met throughout the project lifecycle.

Environmental project planning, determining and managing the scope, timeline, budget, and resources (human resources, equipment). Risk management (e.g., regulatory change risk, climate change impact risk) is particularly critical in these projects.

Stakeholder management, managing expectations and ensuring cooperation by maintaining regular communication with different interest groups (governments, NGOs, investors, local communities) for the success of the project.

Performance monitoring and evaluation, determining and reporting key performance indicators to track whether projects are meeting environmental and financial targets.

Administrative Competencies

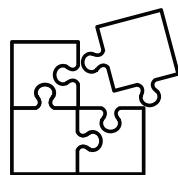
Organizational learning and capability building are essential competencies for managing sustainability within modern workplaces. Students equipped with these skills can help organizations strengthen their internal knowledge, support continuous improvement, and promote a culture that embraces sustainable practices.

This competency includes designing and supporting training programs, sharing best practices, and encouraging teams to develop the skills needed for long-term environmental performance.

By fostering learning and growth, students contribute to building resilient and future-ready organisations.

Administrative Competencies

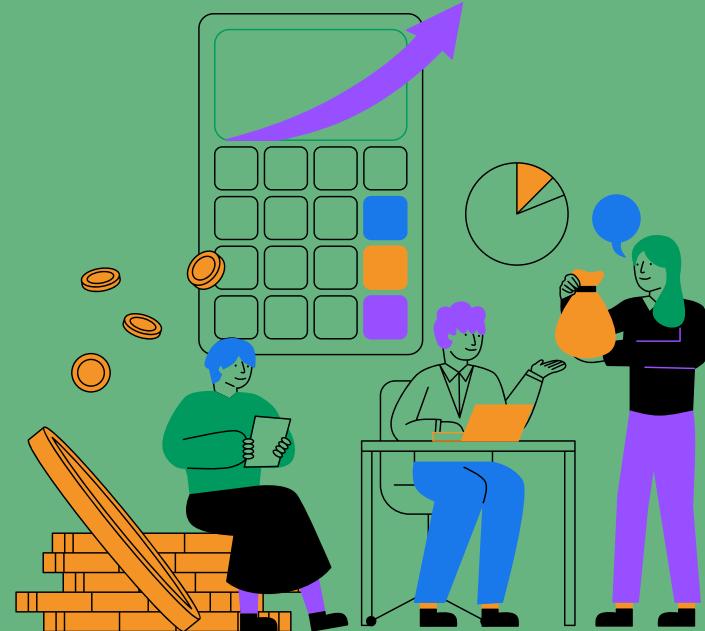
Crisis and resilience management enable students to prepare organizations for environmental risks, supply chain disruptions, and the growing challenges associated with climate change. This competency involves assessing vulnerabilities, planning for emergencies, and developing strategies that protect people, operations, and resources


Sustainable innovation management focuses on developing and guiding new ideas, products, and processes that support environmental responsibility and resource efficiency. Students with this competency can help organisations identify sustainability challenges, generate creative solutions, and manage innovation projects aligned with green goals.

This includes understanding circular economy principles, evaluating environmental impacts, and integrating sustainable design approaches. By supporting innovative thinking, students play a key role in driving the transition toward greener business models and future-oriented sustainable technologies.

Administrative Competencies

Strategic planning skills enable students to contribute to an organization's sustainability vision by analysing risks and opportunities, setting long-term environmental objectives, and aligning operational decisions with broader climate and resource-efficiency goals.


Administrative roles in green careers also require strong capabilities in sustainable procurement and supply chain management. Students must understand environmental standards, evaluate supplier performance, track sustainability indicators, and ensure transparency and responsibility across value chains.

Administrative competencies include human resources and talent development skills, such as identifying green skill gaps within the workforce, supporting sustainability-focused training, and fostering a workplace culture that encourages continuous learning and climate-aware decision-making.

Administrative Competencies

Together, these administrative competencies prepare students to take active roles in coordinating sustainability strategies, leading organizational change, and supporting the effective management of green transition processes.

6. Challenges and Future Outlook

- The global shift toward sustainability, known as **the Green Transition**, is often viewed through a lens of technology, policy, and environmental science.
- While these are critical, this perspective misses the most essential element: **people**.
- At its core, **the Green Transition** is a profound "people change challenge."
- It requires not only new tools and regulations but also a fundamental shift in how we think, collaborate, and lead.
- While advancements in AI, data analytics, and reporting frameworks provide the technical architecture for this shift, they are insufficient without leaders who can translate data into dialogue, compliance into commitment, and strategy into action.

- Successfully navigating the Green Transition requires organizations to address critical skills gaps, adapt swiftly to new compliance requirements, and strategically deploy innovations such as artificial intelligence (AI) and digital governance frameworks to enhance operational resilience and transparency.

6. Challenges and Future Outlook

- The most critical soft skills identified for the Green Transition include **collaborating and building coalitions**, empowering teams, and setting and inspiring vision. Practitioners require exceptional communication, engagement, and influence skills to persuade stakeholders who often lack formal mandates or incentives for climate targets.
- Core personal attributes such as **passion, empathy, and resilience** are considered essential for navigating emotionally charged conversations and persistent pushbacks and setbacks.

Skills Gaps

- Sustainability teams are typically small and under-resourced, with most organizations (72%) employing fewer than five staff members formally dedicated to the Green Transition.
- This limited resourcing, coupled with a lack of formal authority to implement company-wide change, increases reliance on soft skills to successfully execute expansive mandates, such as managing complex Scope 3 emissions.
- Compounding these administrative pressures, 62% of practitioners report experiencing **burnout** related to Green Transition work, posing a significant risk to achieving climate targets.
- Despite the recognized necessity of soft skills, organizations often give these areas **low priority in training and development**, failing to connect climate strategy with dedicated learning resource plans

6. Challenges and Future Outlook

- The academic realm also presents a foundational skills challenge, as the integration of sustainable development into mainstream **economics curriculum** is noted as scant and largely missing.
- Since economics is critical for determining resource allocation and societal needs, this oversight is significant. A major structural barrier to this integration is perceived in the Research Excellence Framework.

Skills Gaps

- There is a growing imbalance between the demand for green skills and their supply, with Europe projected to face a 101.5% gap by 2050 unless urgent interventions are implemented.
- Industries such as construction and manufacturing are especially affected, with only a small fraction of workers possessing the necessary sustainability competencies.
- To close this gap, educational programs must focus on three pillars: business fundamentals, scientific literacy, and policy knowledge, ensuring professionals can connect sustainability initiatives to organizational strategy and regulatory requirements.

6. Challenges and Future Outlook

The regulatory climate is rapidly shifting toward mandatory and standardized climate disclosure, creating both a critical compliance challenge and an opportunity for 2025 and beyond.


Major Global Disclosure Regimes

Key international standards are being implemented or finalized globally:

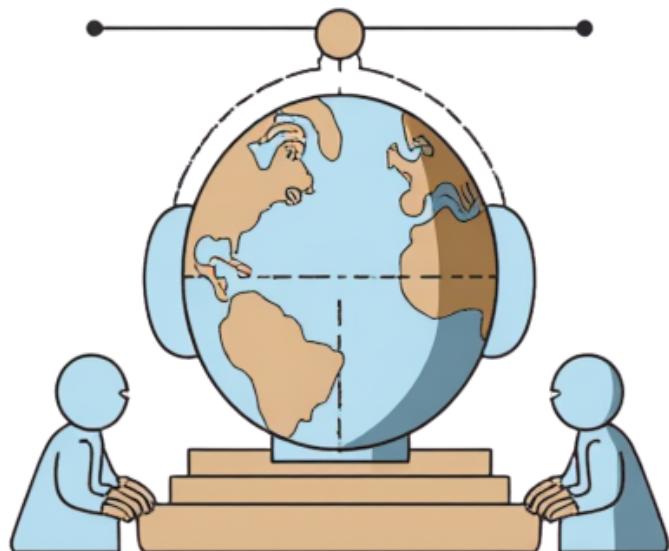
- **ISSB's IFRS S2:** This standard, effective January 1, 2024 (with a one-year implementation grace period), requires reporting on Scope 1 and 2 greenhouse gas (GHG) emissions and climate-related targets. The ISSB also recommends that countries include Scope 3 emissions in their disclosure regulations. As of June 2025, 36 jurisdictions were adopting or finalizing measures to implement the ISSB standards.
- **EU CSRD:** The European Union's Corporate Sustainability Reporting Directive requires phased implementation starting with the 2024 fiscal year (disclosures due in 2025). The requirements, which mandate adherence to the European Sustainability Reporting Standards (ESRS), will expand to include local subsidiaries of non-EU companies from the 2025 fiscal year. A central tenet of the CSRD is the Double Materiality concept, which requires companies to assess both how sustainability issues affect their financial performance and how their activities affect society and the environment.

Regulatory Changes and Compliance Trends

- **US SEC Rules:** The US Securities and Exchange Commission's Climate Disclosure Rules, finalized in March 2024, mandate disclosure of Scope 1 and 2 emissions and climate governance for large public companies, with phased implementation set to begin in the 2025 fiscal year. However, the rules are currently subject to a voluntary stay and litigation, with significant uncertainty regarding their future enforcement or defense by the SEC.

6. Challenges and Future Outlook

- Failure to meet disclosure obligations or to provide accurate information carries severe consequences, including sanctions, criminal penalties, and lawsuits arising from **greenwashing**.
- There is a growing trend toward holding individual directors personally accountable for failures in corporate decision-making related to climate change.
- Strategic responses require companies to analyze the impact of international standards, establish robust IT systems for data collection and verification, and implement supply chain risk management to secure Scope 3 data.



Regulatory Changes and Compliance Trends

- The regulatory landscape for sustainability is becoming increasingly complex, with political shifts and regional disparities creating ambiguity for businesses.
- The EU Omnibus proposal and changes to regulations like the Corporate Sustainability Reporting Directive (CSRD) may temporarily reduce reporting requirements, potentially weakening the quality and volume of sustainability data available to investors and stakeholders.
- Companies operating internationally must navigate these evolving policies, adapting to new compliance burdens and regional differences in sustainability standards.

6. Challenges and Future Outlook

- Advanced digital technologies—particularly AI, Blockchain, and the Internet of Things (IoT)—are transforming how organizations track, analyze, and report on sustainability metrics, offering future pathways for scaling climate finance, but their adoption presents significant technical and ethical governance hurdles.
- AI is emerging as a reliable solution to address the limitations of traditional carbon accounting, which is prone to error, requires manual data entry, and fails to provide the accuracy and real-time detail needed for effective environmental management.

Technological Innovations

AI offers:

- **Enhanced Accuracy and Speed.** AI automates data collection and calculations, reducing the likelihood of human error and streamlining complex workflows to enable faster, more accurate emissions tracking.
- **Predictive Insights.** AI uses predictive analytics to analyze data and foresee future emissions trends, supporting strategic decision-making to meet environmental targets.
- **Supply Chain Tracking.** AI enables precise tracking and analysis of Scope 3 emissions across complex global value chains, uncovering hotspots that are otherwise difficult to measure.
- **Reporting and Analysis Tools:** Innovations include auto-matching of emission factors, Optical Character Recognition (OCR) for digitizing physical data, and Generative AI for automating the creation of comprehensive, standardized sustainability reports. AI systems are also used to detect anomalies in sustainability data and to propose actionable carbon-reduction recommendations.

6. Challenges and Future Outlook

Despite the benefits, the full potential of these technologies is challenged by several factors:

- **Data Quality and Availability.** AI models require access to high-quality, fit-for-purpose, and granular datasets for practical training, which are often lacking in existing sustainability reporting.
- **Technical Infrastructure and Interoperability.** Legacy IT systems often pose a significant barrier to the rapid deployment and connectivity of AI solutions. Challenges related to interoperability—ensuring that diverse platforms (AI, IoT, and Blockchain) can communicate using standardized protocols—frequently complicate system integration.
- **Initial Investment Costs.** Organizations face high costs for infrastructure upgrades and technology integration, which is particularly burdensome for small and medium-sized enterprises (SMEs).

Technological Innovations

- **The future of sustainability hinges on closing these gaps:** transitioning the workforce from technical specialists to strategic change agents, leveraging technology to manage complex data (e.g., Scope 3), and implementing robust digital and regulatory frameworks to ensure credible, secure, and transparent progress.

6. Challenges and Future Outlook

The increased reliance on digital systems, particularly those handling vast amounts of sensitive information, introduces critical governance challenges related to security and ethics.

- **Cybersecurity and Privacy.** Interconnected systems, especially those that use IoT devices, expand the attack surface, necessitating robust cybersecurity frameworks **to protect against breaches**. Data privacy is a core concern, requiring clear governance frameworks and accountability mechanisms to ensure the ethical and transparent use of AI systems and of data collected via sensors.
- **Corporate Digital Responsibility (CDR).** The concept of CDR has emerged, particularly in frameworks established by Germany and France, as an extension of traditional corporate social responsibility (CSR). CDR refers to the practices and policies through which organizations **responsibly manage their use of data** and digital technologies across social, economic, and environmental dimensions. It emphasizes compliance, ethics (particularly with respect to AI), and environmental accountability regarding the environmental impact of digital operations.

Technological Innovations

- Technology offers powerful tools for sustainability, but its ethical and equitable use remains a key challenge.
- AI, IoT, and blockchain are transforming resource optimization and supply chain transparency, while green computing and edge computing are reducing the energy footprint of IT operations.
- The rapid pace of innovation requires careful management to minimize environmental impacts, bridge the digital divide, and ensure responsible innovation.
- Developers are increasingly adopting green coding practices, but broader adoption is needed to align software development with sustainability goals.

7. Case Studies: Sectoral Insights for Green Careers

- This section presents 10 examples of green good practices from different countries and across a wide range of sectors.
- These cases illustrate how green transition processes are unfolding within specific industries, while also offering inspiring examples for those interested in pursuing careers in these fields.
- Spanning sectors from textiles and transport to waste management, food systems, retail, and chemicals, the selected cases highlight how existing jobs are being transformed and how new employment and skill opportunities are emerging as part of the green transition.

7. Case Studies: Sectoral Insights for Green Careers

- The textile sector is widely recognised as one of the industries with a high environmental footprint due to intensive water use, energy consumption, and waste generation.
- At the same time, it has become one of the most innovative sectors in the green transition, driven by technological advancements, circular production models, and sustainable materials.
- This combination makes textiles a key sector for understanding how traditional industries can be transformed and how new green career pathways can emerge.

Sector 1: Textile

Implemented Green Practices

- **Resource-Efficient Production Technologies.** Energy and water consumption have been significantly reduced through the adoption of advanced production technologies such as Dope Dyed Technology, Air Jet Dyeing, and Digital Printing. Unlike conventional methods, these technologies enable near-zero water use during production processes.
- **Circular Production and Waste Reduction.** In line with zero-waste objectives, production waste is reintroduced into the production cycle as raw material. Recycled polyester yarns and recycled polyester filament yarns are produced, contributing to a circular textile value chain.
- **Biodegradable and Closed-Loop Materials.** Through biodegradable and "Close the Loop" technologies, environmentally friendly polyester yarns are developed that fully decompose in nature, minimizing long-term environmental impacts.
- **Water Reuse and Sustainable Water Management.** Wastewater generated during textile manufacturing processes is treated and reused within production, thereby creating environmentally responsible and economically sustainable operations.
- **Rainwater Harvesting Systems.** Rainwater collected from factory rooftops is channeled into storage tanks via dedicated collection systems. This natural resource is then used to meet part of the factory's water demand, reducing reliance on freshwater sources.
- **Energy Recovery and Renewable Energy Use.** To lower energy consumption and carbon emissions, waste heat from air compressors is reused to heat working environments. Additional energy savings and carbon footprint reductions are achieved through the installation of solar energy systems on factory rooftops.

7. Case Studies: Sectoral Insights for Green Careers

Key Areas of Sectoral Improvement

- **Environmental.** The textile sector has significant potential to reduce its environmental footprint through improved resource efficiency and cleaner production practices. Water reuse systems can substantially lower freshwater consumption, while the increased use of renewable energy reduces emissions and dependence on fossil fuels. Compliance with chemical management standards and the adoption of circular solutions, such as recycled yarns, further support sustainable textile production.
- **Economic.** Greater resource efficiency leads to cost savings in water, energy, and raw materials, improving operational performance and competitiveness. The growing demand for sustainable and certified textile products also creates new market opportunities, particularly in export-oriented segments, positioning sustainability as a driver of innovation and long-term value creation.
- **Social.** The green transition supports workforce development through sustainability-focused training and upskilling. More inclusive governance practices enhance stakeholder participation, improve working conditions, and contribute to a fairer, more inclusive transition in the textile sector.

Sector 1: Textile

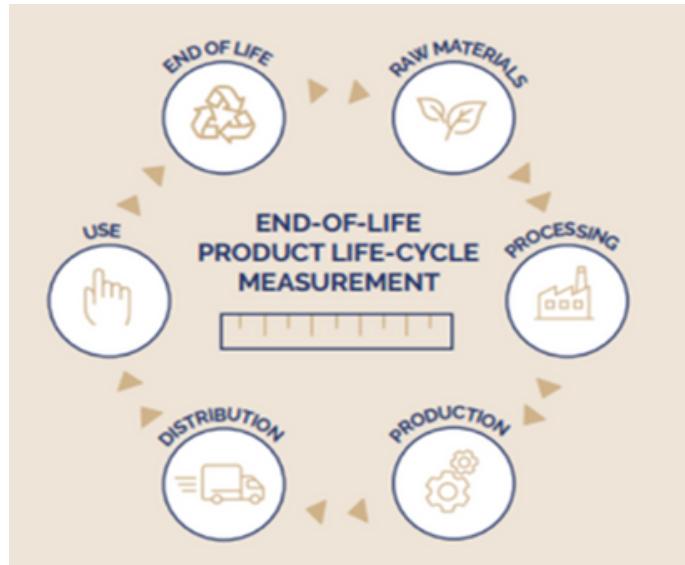
Opportunities in the Sector

- The green transition is opening up new opportunities across the textile sector, extending beyond production to design, supply chain management, quality control, and sustainability reporting.
- As resource-efficient and circular production models become more widespread, demand is increasing for innovative materials, cleaner technologies, and sustainable business practices.
- Growing expectations from international markets and consumers for environmentally responsible products are creating new roles related to certification, traceability, and compliance with sustainability standards. In this context, the textile sector offers not only new green jobs but also opportunities to reshape existing roles by integrating sustainability into everyday operations and decision-making processes.

7. Case Studies: Sectoral Insights for Green Careers

Sector 1: Textile

Green Jobs and Skills Implications


- The transformation of the textile sector is reshaping job profiles and skill requirements.
- In addition to technical expertise in textile production, there is rising demand for skills related to sustainability, resource management, and circular economy practices.
- Key green skills in the textile sector include knowledge of sustainable materials and production processes, water and energy management, chemical safety and environmental standards, and basic data literacy for monitoring environmental performance.
- Alongside these technical skills, transversal competencies such as analytical thinking, problem-solving, collaboration, and sustainability awareness are becoming increasingly important for adapting to evolving roles and contributing effectively to the green transition.

7. Case Studies: Sectoral Insights for Green Careers

Sector 2: Home & Personal Care Products

- The Home & Personal Care Products Sector is a cornerstone of public health, daily life, and industrial hygiene.
- Dominated by global companies operating across consumer goods and specialty chemicals, the sector has a significant environmental footprint due to intensive energy use, chemical inputs, packaging, and logistics.
- At the same time, it is one of the most influential sectors in accelerating the green transition, given its strong R&D capacity, global supply chains, and direct consumer interaction.

Implemented Green Practices

- **Sustainable Product Formulation and Chemistry.** Companies in the sector are increasingly developing concentrated, biodegradable, and low-temperature-active detergents, thereby reducing chemical intensity, water use, and energy demand during both production and consumer use.
- **Energy Efficiency and Renewable Energy Use.** Manufacturing facilities are adopting energy-efficient technologies such as heat pumps, advanced process control systems, LED lighting, and on-site renewable energy installations to reduce energy consumption and operational emissions.
- **Sustainable Packaging and Circular Solutions.** Packaging innovation plays a central role in the sector's green transition. Refillable systems, recycled-plastic content, lightweight packaging, and alternative materials are increasingly used to reduce plastic waste and support circular-economy models.
- **Optimized Logistics and Digitalisation.** Logistics-related emissions are reduced through route optimization, the use of low-emission transport options, and digital supply chain management systems. The transition to cloud-based platforms supports paperless processes and more efficient data-driven decision-making.

7. Case Studies: Sectoral Insights for Green Careers

Sector 2: Home & Personal Care Products

Key Areas of Sectoral Improvement

- **Environmental.** The sector demonstrates strong potential to reduce greenhouse gas emissions, water use, and chemical pollution through cleaner formulations, energy-efficient production, and circular packaging systems. Improvements across the value chain—from raw material sourcing to consumer use—enable substantial reductions in environmental impacts.
- **Economic.** Green innovation enhances operational efficiency and cost savings while strengthening competitiveness in global markets. Sustainable product lines and packaging solutions respond to growing consumer demand and regulatory requirements, turning sustainability into a source of market differentiation and long-term value creation.
- **Social.** By producing safer and more environmentally responsible products, the sector contributes to public health and consumer well-being. Internally, sustainability strategies foster organizational learning, employee engagement, and a shared responsibility for environmental performance.

Opportunities in the Sector

- The green transition creates new opportunities in sustainable chemistry, product design, packaging innovation, lifecycle assessment, and digital supply chain management.
- Increasing consumer awareness and regulatory pressure drive demand for professionals who can integrate sustainability into product development, marketing, and operations.

Green Jobs and Skills Implications

- The sector's transformation is reshaping job profiles across R&D, manufacturing, logistics, and corporate functions. Key green skills include knowledge of green chemistry principles, regulatory compliance, lifecycle thinking, data analysis for environmental performance, and cross-functional collaboration.
- Transversal skills such as analytical thinking, problem-solving, and sustainability literacy are increasingly critical in this sector.

7. Case Studies: Sectoral Insights for Green Careers

- The maritime transport and logistics sector plays a central role in global trade and supply chains while also accounting for a significant share of energy use and greenhouse gas emissions.
- Ports, as critical nodes of this system, are key actors in the green transition, with strong potential to reduce emissions, protect marine ecosystems, and support sustainable logistics through renewable energy, digitalization, and innovative infrastructure solutions.

Sector 3: Maritime Transport and Logistics

Implemented Green Practices

- **Renewable Energy Integration.** Photovoltaic solar panels installed on port buildings supply part of the port authority's internal electricity network with renewable energy, reducing dependence on conventional energy sources.
- **Resource Efficiency and Monitoring Systems.** Measures to reduce water and paper consumption are supported by continuous monitoring of energy, waste, and material use. This includes tracking paper tonnage and ensuring the traceability of recycling processes.
- **Onshore Power Supply (OPS) Systems.** The gradual implementation of Onshore Power Supply allows ships to connect to the port's electricity grid while docked, eliminating the need to run auxiliary engines and significantly reducing emissions and noise in port areas.
- **Innovation for Marine Ecosystem Protection.** Innovative technologies, such as 3D concrete printing, are being applied to support the conservation of endangered marine species, linking port infrastructure development with marine biodiversity protection.
- **Green Fuels and Wastewater Management.** Ports are preparing for green hydrogen production through the installation of fixed refuelling infrastructure, while ship-related wastewater management systems are being upgraded to reduce marine pollution.

7. Case Studies: Sectoral Insights for Green Careers

Key Areas of Sectoral Improvement

- **Environmental.** The integration of renewable energy, OPS systems, and improved wastewater management significantly reduces emissions, energy use, and pollution in port operations. Innovative applications such as 3D printing for marine conservation further strengthen the sector's environmental performance.
- **Economic.** Energy efficiency measures and cleaner energy sources contribute to long-term cost savings and operational resilience. Investments in green port infrastructure enhance competitiveness and position ports as future-ready logistics hubs.
- **Social.** Reduced air and noise pollution improves working conditions for port employees and living conditions for the surrounding communities. The adoption of innovative and environmentally responsible practices also strengthens institutional credibility and stakeholder trust.

Sector 3: Maritime Transport and Logistics

Opportunities in the Sector

- The green transition creates opportunities in renewable energy integration, port electrification, green fuel infrastructure, environmental monitoring, and marine ecosystem restoration.
- Ports increasingly demand professionals who can combine engineering, environmental science, and logistics expertise to support sustainable maritime operations.

Green Jobs and Skills Implications

- The transformation of the maritime transport and logistics sector is reshaping skill needs across port management, engineering, and logistics functions.
- Key green skills include knowledge of renewable energy systems, port electrification technologies (such as OPS), environmental impact assessment, data monitoring, and regulatory compliance.
- Systems thinking, problem-solving, and cross-sector collaboration are essential transversal skills in this sector.

- The road freight transport sector is a backbone of national and international supply chains, but also one of the main sources of greenhouse gas emissions in the transport system.
- As regulatory pressure and market expectations increase, the sector is undergoing a green transition focused on vehicle electrification, renewable energy use, intermodal logistics, and workforce upskilling.

Implemented Green Practices

- **Fleet Electrification and Clean Vehicles.** The use of electric vehicles in road freight operations is increasing, complemented by the operation of fully electric forklifts in logistics facilities. These measures directly reduce emissions and noise, particularly in urban and industrial areas.
- **Renewable Energy Integration.** Solar energy systems installed at logistics facilities supply up to 80% of on-site energy demand, supporting facility operations and EV charging.
- **Intermodal and Sustainable Logistics Models.** By developing a dry port in cooperation with regional partners, the sector is supporting intermodal transport solutions that enable the movement of containers and semi-trailers across Europe at lower economic and environmental costs.
- **Driver Training and Fleet Efficiency.** Continuous training programmes focus on eco-driving, route optimisation, and efficient vehicle use, alongside improved fleet maintenance practices to reduce fuel consumption and operational impacts.

7. Case Studies: Sectoral Insights for Green Careers

Sector 4: Road Freight Transport

Key Areas of Sectoral Improvement

- **Environmental.** The adoption of cleaner vehicle technologies, renewable energy, and optimized logistics systems significantly reduces emissions and fuel consumption in freight operations.
- **Economic.** Energy savings, improved fleet performance, and intermodal transport solutions contribute to lower operating costs and increased efficiency, strengthening the sector's competitiveness.
- **Social.** Driver training and skills development enhance safety, professional competence, and awareness of sustainability, while contributing to improved working conditions and organizational learning.

Opportunities in the Sector

- The green transition opens opportunities in electric mobility, intermodal logistics planning, renewable energy management, fleet optimization, and digital route management.
- Growing demand for low-emission transport services also creates new business models and service niches within the freight transport sector.

Green Jobs and Skills Implications

- The sector's transformation is reshaping job profiles, particularly for drivers, fleet managers, and logistics planners.
- Key green skills include eco-driving techniques, basic knowledge of electric vehicles and charging infrastructure, route optimization, and data-supported logistics planning.
- Transversal skills such as adaptability, continuous learning, and sustainability awareness are increasingly important in this sector.

7. Case Studies: Sectoral Insights for Green Careers

- The waste management and recycling sector is a core pillar of the circular economy and plays a critical role in reducing resource depletion, emissions, and environmental pollution.
- By shifting from linear “use-and-dispose” models to circular systems based on reuse and recycling, the sector enables both environmental protection and new economic opportunities.

Sector 5: Waste Management and Recycling

Implemented Green Practices

- **Deposit Return Systems (DRS).** The Deposit Return System infrastructure is being expanded by installing collection machines across regions. These systems encourage citizens to return bottle packaging by offering financial incentives and supporting high collection rates and circular material flows.
- **Advanced Recycling Infrastructure.** High-capacity industrial processing and recycling facilities have been established to collect, sort, and process large volumes of bottle packaging, ensuring efficient transfer of materials into recycling streams.
- **Digital and AI-Supported Recycling Technologies.** Innovative system design and artificial intelligence-supported sorting machines improve material separation accuracy and recycling efficiency, increasing the quality and value of recycled outputs.

7. Case Studies: Sectoral Insights for Green Careers

Key Areas of Sectoral Improvement

- **Environmental.** The widespread collection of bottle packaging through deposit-return systems reduces littering, lowers carbon emissions, and decreases demand for virgin raw materials, thereby contributing to more sustainable resource use.
- **Economic.** Reusable and recyclable packaging systems reduce raw material and energy use, generate economic value across the recycling value chain, and support the development of secondary raw material markets.
- **Social.** Citizen participation is central to the success of deposit return systems. Financial incentives, awareness campaigns, and clear communication encourage behavioural change over time, enabling large-scale recycling practices involving billions of packaging units annually.

Sector 5: Waste Management and Recycling

Opportunities in the Sector

- The expansion of deposit return systems and advanced recycling technologies creates opportunities in circular economy management, recycling operations, digital system maintenance, and public awareness initiatives.
- Growing demand for secondary raw materials also opens new business models and employment pathways within the sector.

Green Jobs and Skills Implications

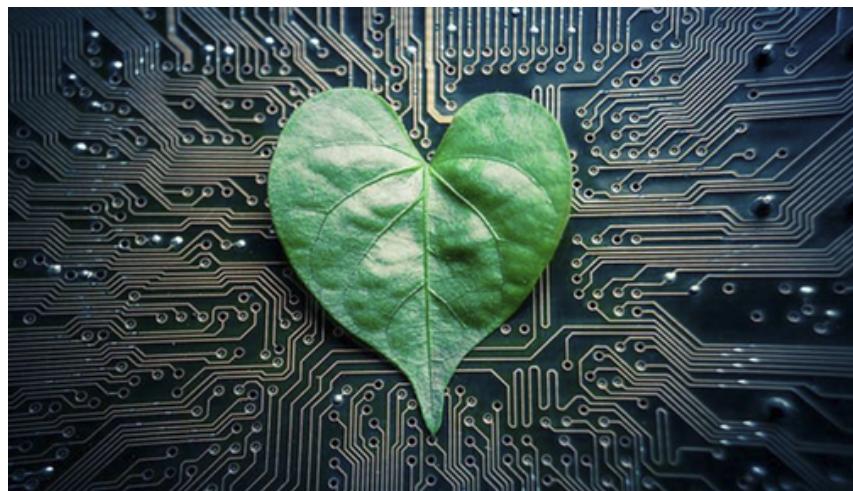
- The green transition in waste management is increasing demand for skills related to recycling technologies, digital and AI-supported systems, data monitoring, and circular economy planning.
- Communication and community engagement skills are also increasingly important, as citizen participation plays a key role in system effectiveness.

7. Case Studies: Sectoral Insights for Green Careers

- The sustainable digital technologies sector plays an increasingly important role in enabling the green and social transition across industries.
- By combining digital tools with sustainability and social impact objectives, this sector helps organizations transform high-level ESG strategies into concrete, measurable actions at the operational and local level.
- Green and SocialTech solutions are particularly effective in driving behavioral change, employee engagement, and data-informed sustainability management.

Sector 6: Sustainable Digital Technologies

Implemented Green Practices


- **Digital Platforms for CSR Implementation.** Digital platforms are used to structure, deploy, and monitor environmental and social initiatives across multi-site organisations. These tools centralise action libraries, templates, and reporting dashboards, reducing administrative workload and making sustainability implementation more accessible and scalable.
- **Employee Engagement and Local Action Enablement.** A bottom-up approach is adopted to empower employees to initiate and participate in local sustainability actions, such as waste reduction, sustainable mobility, biodiversity protection, and community engagement. Gamification and recognition mechanisms support long-term participation and behavioural change.
- **Low-Carbon and Responsible Work Practices.** Sustainability principles are also applied to internal operations through low-carbon mobility policies, remote working practices, and regular awareness-raising workshops on environmental and social issues.

7. Case Studies: Sectoral Insights for Green Careers

Sector 6: Sustainable Digital Technologies

Key Areas of Sectoral Improvement

- **Environmental.** By enabling thousands of decentralized actions across organizations, sustainable digital technologies help reduce environmental impacts, improve resource awareness, and foster more responsible day-to-day practices.
- **Economic.** Digital sustainability solutions support value creation by improving employee retention, strengthening organizational reputation, and helping companies respond more effectively to ESG-related market and regulatory expectations.
- **Social.** The sector enhances employee motivation, sense of belonging, and participation by embedding sustainability into everyday work practices and decision-making processes.

Opportunities in the Sector

- The growing demand for ESG integration and impact-driven business models creates opportunities in sustainability software development, digital CSR management, employee engagement solutions, and data-driven impact assessment.
- The sector offers career paths that combine technology, sustainability, and organisational change.

Green Jobs and Skills Implications

- Jobs in this sector increasingly require hybrid skill sets, combining digital competencies with sustainability knowledge. Key skills include ESG literacy, data analysis, digital platform management, communication, and change management.
- Transversal skills such as systems thinking, collaboration, and analytical problem-solving are essential for supporting scalable impact.

7. Case Studies: Sectoral Insights for Green Careers

- The dairy products sector is a key component of the agri-food system, with significant environmental, economic, and social impacts across production, processing, packaging, and consumption stages.
- Due to its reliance on natural resources, livestock management, and extensive packaging use, the sector plays a critical role in the green transition, particularly in areas such as circular packaging, carbon reduction, animal welfare, and responsible supply chain management.

Sector 7: Agri-food - Dairy Products

Implemented Green Practices

- **Sustainable Packaging and Eco-Design.** Given the widespread use of packaging in dairy products, eco-design approaches are increasingly applied to assess and select packaging options that minimize environmental impacts. These approaches prioritize recyclable materials, reduce packaging intensity, and are compatible with local waste management systems.
- **Consumer Awareness and Circularity.** Clear sorting instructions are provided on product packaging to support correct consumer behavior and improve recycling outcomes. In parallel, awareness-raising and training initiatives help employees and value chain partners better understand packaging policies and circular economy principles.
- **Animal Welfare and Responsible Farming.** Structured animal welfare programs are implemented across partner farms, including certification schemes, regular audits, and targeted training. These measures aim to improve livestock conditions and ensure compliance with recognized animal welfare standards.
- **Carbon Footprint Reduction.** The sector is increasingly focusing on energy-efficiency improvements and the integration of renewable energy sources to reduce greenhouse gas emissions across processing facilities and supply chains.

7. Case Studies: Sectoral Insights for Green Careers

Key Areas of Sectoral Improvement

- **Environmental.** Environmental impacts are reduced through lower packaging-related waste, decreased use of virgin materials, and improved recycling performance. Carbon-reduction strategies across energy use and logistics deliver significant sector-level emissions reductions.
- **Economic.** Resource efficiency and sustainable packaging innovations help reduce long-term costs and regulatory risks and strengthen market positioning amid growing demand for sustainable food products.
- **Social.** Training initiatives targeting employees and suppliers support knowledge transfer, responsible farming practices, and improved working standards across the value chain.

Sector 7: Agri-food - Dairy Products

Opportunities in the Sector

- The green transition of the dairy sector creates opportunities in sustainable packaging design, low-carbon food processing, animal welfare auditing, supply chain sustainability management, and consumer communication.
- These areas offer growing career pathways aligned with environmental and social value creation.

Green Jobs and Skills Implications

- Green jobs in the dairy sector increasingly require hybrid skill sets combining food technology, sustainability knowledge, regulatory awareness, and data-driven decision-making.
- Key competencies include life-cycle thinking, carbon accounting, sustainable sourcing, and stakeholder engagement, alongside transversal skills such as collaboration and problem-solving.

7. Case Studies: Sectoral Insights for Green Careers

- LNG Terminals, Liquid Energy Infrastructure, Emerging Low-Carbon Solutions.
- The energy infrastructure and transition fuels sector plays a strategic role in ensuring energy security while enabling the shift toward low-carbon and climate-neutral energy systems.
- Traditionally centered on fossil-based liquid energy products and LNG, the sector is increasingly repositioning itself as a bridge between conventional energy systems and emerging sustainable solutions such as renewable electricity, biomethane, hydrogen carriers, carbon capture and storage (CCS), and energy storage technologies.

Sector 8: Energy Infrastructure and Low-carbon Transition

Implemented Green Practices

- **Integration of Renewable Energy in Operations.** Energy terminals are increasingly transitioning to renewable electricity for their operations, significantly reducing indirect emissions and supporting long-term climate-neutrality targets. Electrifying existing infrastructure enables emissions reductions without compromising operational reliability.
- **Low-Carbon and Alternative Energy Carriers.** The sector is expanding its services in biomethane liquefaction and biofuel handling, enabling cleaner alternatives to fossil fuels in maritime and land transport. Sustainability certification schemes ensure traceability and compliance with international emission reduction standards.
- **Carbon Capture and Storage (CCS) Infrastructure Development.** Energy infrastructure operators are increasingly involved in developing integrated CO₂ capture, transport, and storage value chains. These projects support regional industrial decarbonization and align with European climate objectives.
- **Circular Economy and Resource Efficiency.** Advanced wastewater treatment and waste recovery technologies are applied at terminals, reducing pollution, minimising resource use, and recovering filtration materials. Circular economy principles are embedded into operational processes to lower environmental footprints.

7. Case Studies: Sectoral Insights for Green Careers

Sector 8: Energy Infrastructure and Low-carbon Transition

Key Areas of Sectoral Improvement

- **Environmental.** Significant progress has been made in reducing greenhouse gas emissions, water consumption, and waste generation through electrification, renewable energy use, circular treatment systems, and the growing share of low-carbon energy products.
- **Economic.** Sustainability-driven investments enhance long-term profitability and resilience. Diversification into new energy services, international operations, and infrastructure consultancy strengthens revenue stability while reducing exposure to fossil fuel market volatility.
- **Social.** Strong emphasis is placed on employee safety, well-being, skills development, and stakeholder engagement. Sustainability targets are increasingly embedded into leadership performance indicators, reinforcing accountability and organizational commitment.

Opportunities in the Sector

- The sector creates growing opportunities in climate-aligned infrastructure development, low-carbon fuel logistics, CCS systems, hydrogen carrier handling, energy storage, and ESG data management.
- These areas support the emergence of high-value green and transition jobs.

Green Jobs and Skills Implications

- Green and transition roles in this sector require interdisciplinary competencies combining engineering, energy systems knowledge, sustainability regulation, data governance, and risk management.
- Leadership, safety culture, and stakeholder coordination are increasingly critical transversal skills.

7. Case Studies: Sectoral Insights for Green Careers

- The medical technologies and digital health sector play a critical role in modern healthcare systems by providing diagnostic, monitoring, and treatment solutions that directly affect patient outcomes and system efficiency.
- At the same time, the sector is characterized by high energy consumption, complex global supply chains, intensive use of materials, and rapidly expanding digital infrastructure.
- As a result, it has become a key focus area for green transition efforts that combine technological innovation, environmental responsibility, and social impact.

Sector 9: Medical Technologies and Digital Health

Implemented Green Practices

- **Energy-efficient medical devices.** The development of imaging and monitoring equipment with lower energy consumption during clinical use reduces operational emissions in hospitals.
- **Circular economy models.** Expansion of refurbishment, reconditioning, repair, and reuse of medical devices and spare parts, extending product lifespans and reducing waste and raw material demand.
- **Cleaner operations and logistics.** Greater use of renewable electricity in manufacturing and service operations, alongside the gradual electrification of vehicle fleets and optimization of service routes.
- **Digital solutions.** Remote diagnostics, predictive maintenance, and digital monitoring tools that reduce unnecessary travel, improve equipment uptime, and optimize resource use.

7. Case Studies: Sectoral Insights for Green Careers

Sector 9: Medical Technologies and Digital Health

Key Areas of Sectoral Improvement

- **Environmental.** Lifecycle-based eco-design, energy-efficient equipment, and circular practices reduce emissions, waste generation, and pressure on critical raw materials, particularly across Scope 3 emissions.
- **Economic.** Although sustainable technologies require higher upfront investment, total cost of ownership is reduced through energy savings, longer equipment lifetimes, and lower maintenance costs.
- **Social.** Safer, more reliable medical technologies improve patient care, while sustainability training and responsible innovation enhance employee engagement and trust among healthcare providers and institutions.

Opportunities in the Sector

- The green transition creates new opportunities for the medical technologies and digital health sector by opening markets for refurbished and reconditioned equipment, improving access to high-quality healthcare solutions at lower environmental and financial costs.
- The growing use of digital and AI-based solutions enables more efficient healthcare delivery while reducing the carbon footprint associated with service and maintenance activities.
- Sustainability performance is becoming a competitive advantage in public procurement and hospital investment decisions, encouraging further innovation and collaboration across the sector.

Green Jobs and Skills Implications

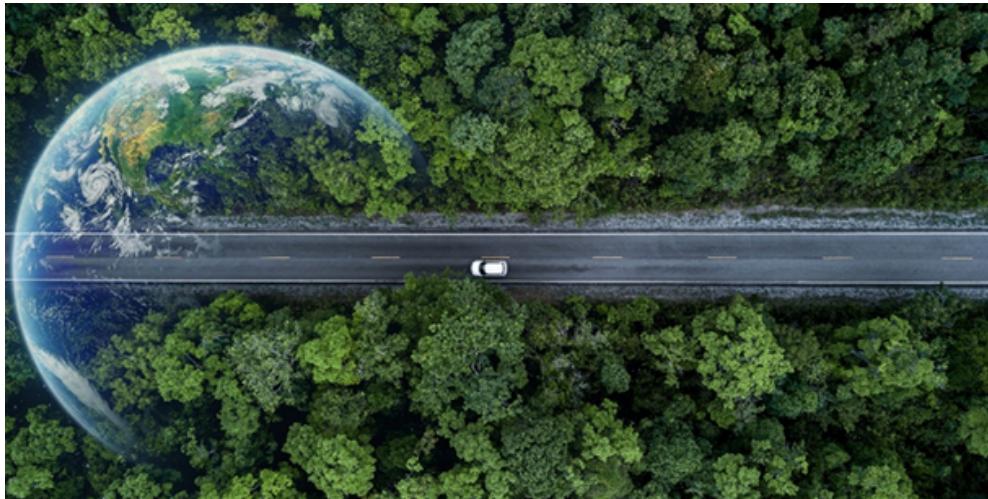
- The sector's transformation is reshaping skill requirements across technical, managerial, and operational roles.
- There is increasing demand for expertise in eco-design, lifecycle assessment, and sustainable supply chain management, alongside advanced digital and data-related skills linked to artificial intelligence, remote monitoring, and energy optimization.
- At the management level, sustainability literacy and the ability to integrate ESG considerations into strategic decision-making are becoming essential competencies.
- Continuous environmental training across departments therefore plays a key role in supporting a successful and inclusive green transition.

7. Case Studies: Sectoral Insights for Green Careers

- The automotive sector plays a critical role in the green transition due to its significant contribution to greenhouse gas emissions, resource consumption, and urban environmental pressures.
- As mobility demand continues to grow globally, transforming vehicle technologies, production systems, and value chains has become essential to achieving climate neutrality targets.
- The sector is therefore a key driver of low-carbon innovation, circular economy practices, and green employment, making it strategically important for sustainable economic transformation.

Sector 10: Automotive

Implemented Green Practices


- **Electrification and Clean Mobility.** The sector is shifting from internal combustion engines toward electric, hybrid, and alternative fuel vehicles to reduce greenhouse gas emissions and fossil fuel dependence.
- **Low-Carbon and Energy-Efficient Manufacturing.** Automotive production increasingly relies on renewable energy, smart factories, and resource-efficient processes to lower energy use and carbon intensity.
- **Circular Economy and Sustainable Materials.** Manufacturers adopt circular approaches through recyclable and bio-based materials, remanufacturing of components, and battery reuse and recycling systems.
- **Digitalization for Sustainability Management.** Digital technologies are used to monitor emissions, optimize energy and resource use, and improve sustainability performance across production and supply chains.

7. Case Studies: Sectoral Insights for Green Careers

Sector 10: Automotive

Key Areas of Sectoral Improvement

- **Environmental.** Reduction of greenhouse gas emissions through vehicle electrification, low-carbon manufacturing, renewable energy use, and circular material and battery management.
- **Economic.** Cost optimization through energy efficiency, innovation in clean technologies, development of new green markets (EVs, batteries, mobility services), and long-term competitiveness.
- **Social.** Creation of green jobs, reskilling and upskilling of the workforce, improved occupational health and safety, and enhanced social acceptance of sustainable mobility solutions.

Opportunities in the Sector

- The green transition creates significant opportunities for the automotive sector by reshaping technologies, markets, and business models.
- The rapid expansion of electric vehicles, battery technologies, and charging infrastructure opens new value chains and investment areas.
- Innovation in low-carbon materials, lightweight design, and energy-efficient manufacturing strengthens global competitiveness.
- Digital mobility solutions and shared mobility models create opportunities for companies to diversify services while reducing environmental impacts.
- Public incentives and climate policies further support market growth and accelerate sustainable transformation.

Green Jobs and Skills Implications

- The transition toward sustainable mobility is transforming employment structures in the automotive sector.
- Demand is increasing for engineers, technicians, and specialists in electric powertrains, battery systems, software, data analysis, and energy management.
- At the same time, existing workers require reskilling and upskilling to adapt from internal combustion engine technologies to electrification and digital systems.
- Green skills such as lifecycle thinking, eco-design, supply chain sustainability, and environmental management are becoming increasingly important across technical, managerial, and operational roles.

8. Appendices

- **Biodiversity**—the variability among living organisms from all sources, including, *inter alia*, terrestrial, marine, and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species, and of ecosystems.
- **Bioeconomy**—parts of the economy that use renewable biological resources to produce food, products, and energy.
- **Business model**—the underlying structure of how a company creates, delivers, and captures value.
- **Business transformation**—making bold and fundamental changes to the way business operates, rather than making incremental step changes to the status quo.
- **Carbon footprint**—measures the total greenhouse gas emissions caused directly and/or indirectly by a person, organization, event, or product life cycle. It is the total carbon emissions from business activities, including energy use (e.g., heating and electricity), waste, water, transport, and the supply chain. The carbon footprint is expressed in carbon dioxide equivalents (CO₂e).

Glossary of Sustainability Terms

- **Carbon management**—the process of measuring, evaluating, and managing carbon emissions produced directly and/or indirectly from an organization's business activities. Carbon management is about taking steps to reduce emissions within a business and extending across the supply chain.
- **Carbon neutrality**—refers to a situation where there is a balance between the amount of carbon that is produced by humans and the amount of carbon that is removed by humans (through technical or natural solutions implemented by an organization) from the atmosphere over a period of time.
- **Circular economy**—a system in which materials never become waste and nature is regenerated. In a circular economy, products and materials are kept in circulation through processes such as maintenance, reuse, refurbishment, remanufacturing, recycling, and composting.
- **Climate change**—the significant variation of average weather conditions becoming, for example, warmer, wetter, or drier over several decades or longer.
- **Climate change adaptation**—actions that reduce the impacts of climate change and maximize the opportunities.

8. Appendices

- **Climate change mitigation**—actions that reduce our emissions and help our transition to net-zero.
- **Corporate governance**—the system of rules, practices, and processes that are put in place to manage and control a company.
- **Corporate Social Responsibility (CSR)**—a concept where businesses integrate social and environmental concerns into their operations and interactions with stakeholders. CSR is generally understood as a company's balancing of economic, environmental, and social imperatives (the triple bottom line) while meeting the expectations of shareholders and other stakeholders.
- **Ecosystem**—a dynamic complex of plant, animal, and microorganism communities and the non-living environment, interacting as a functional unit.
- **Environmental Management System (EMS)**—a set of processes and practices that enable an organization to reduce its environmental impacts and increase its operational efficiency.
- **ESG** stands for environmental, social, and governance. It is a grouping of non-financial factors that may have financial impact (as well as non-financial impact) in the short, medium, or long term.

Glossary of Sustainability Terms

- **Ethical investing**—Ethical investing can also be known as values- or faith-based investing. It concerns investing in accordance with certain principles, often avoiding companies whose products or services are deemed morally or ethically objectionable by the investor or by certain religions, international declarations, conventions, or voluntary agreements.
- **Ethics**—addresses the principles and values that govern human behavior in terms of what is right and wrong. Ethics extends beyond legal requirements and focuses on individual and communal moral principles.
- **Financial reporting**—the process of providing information about an entity that is useful to stakeholders, particularly existing and potential investors and creditors, in assessing the performance of the entity and making decisions relating to providing resources to the entity.
- **GHG emissions/gases**—are the gases that occur in the atmosphere due to natural and human-made causes and that contribute to global warming.

8. Appendices

- **Green business**—a business with a minimal negative impact on the environment. If all organizations strive to become greener, their operations will be more sustainable, resilient, and competitive.
- **Green financial instruments**—a label given to loans, bonds, and other financial instruments for projects or entities that are intended to support positive environmental outcomes, as well as financial returns.
- **Greenwashing**—deliberate or accidental claims about the sustainability of products/services/operations that are exaggerated, misleading, and/or unsubstantiated by an entity or representative of that entity.
- **Supply chain**—a network between a company and its suppliers to produce and distribute a specific product to the final buyer.
- **Sustainability**—a concept that refers to the ability to maintain continuously over time. It is about ensuring a prosperous future for people and the planet, and considering environmental and social risks and opportunities.

Glossary of Sustainability Terms

- **Sustainability report**—a broad term that refers to a report or sections of a report that contain information about an organization's sustainability activities and approach.
- **Sustainable development**—development that meets the needs of the present without compromising the ability of future generations to meet their own needs.
- **Sustainable finance** refers to the financial instruments, such as loans, bonds, or investments, for projects, companies, or initiatives that are intended to have a positive impact on the environment and social outcomes while generating a financial return.
- **Sustainable supply chain**—refers to companies' efforts to consider the environmental and social impact of their products' journey through the supply chain, from raw materials sourcing to production, storage, delivery, and every transportation link in between.

8. Appendices

Self-evaluation Skills Test

- Assess your sustainability competencies across ten dimensions: environmental awareness, resource efficiency, sustainable practices, innovation for sustainability, collaboration and advocacy, climate adaptation and resilience, circular economy and waste management, carbon footprint reduction, green digital skills, and green leadership and policy.
- **Instructions:** Rate each statement on a scale of 1 to 5 (where 1 = Strongly Disagree, 5 = Strongly Agree).

Dimension	Statements	Strongly Disagree (1)	Disagree (2)	Neither Disagree, nor Agree (3)	Agree (4)	Strongly Agree (5)
Environmental awareness	I understand the main causes and consequences of climate change.					
	I can identify how my daily activities impact the environment.					
	I stay informed about global sustainability trends and policies.					
	I recognize the importance of biodiversity for economic and social well-being.					

8. Appendices

Self-evaluation Skills Test

- Assess your sustainability competencies across ten dimensions: environmental awareness, resource efficiency, sustainable practices, innovation for sustainability, collaboration and advocacy, climate adaptation and resilience, circular economy and waste management, carbon footprint reduction, green digital skills, and green leadership and policy.
- **Instructions:** Rate each statement on a scale of 1 to 5 (where 1 = Strongly Disagree, 5 = Strongly Agree).

Dimension	Statements	Strongly Disagree (1)	Disagree (2)	Neither Disagree, nor Agree (3)	Agree (4)	Strongly Agree (5)
Resource Efficiency	I actively seek ways to reduce energy consumption in my work and daily life.					
	I know how to minimize waste and promote recycling.					
	I consider water conservation in my personal and professional activities.					
	I evaluate the environmental impact before using resources.					

8. Appendices

Self-evaluation Skills Test

- Assess your sustainability competencies across ten dimensions: environmental awareness, resource efficiency, sustainable practices, innovation for sustainability, collaboration and advocacy, climate adaptation and resilience, circular economy and waste management, carbon footprint reduction, green digital skills, and green leadership and policy.
- **Instructions:** Rate each statement on a scale of 1 to 5 (where 1 = Strongly Disagree, 5 = Strongly Agree).

Dimension	Statements	Strongly Disagree (1)	Disagree (2)	Neither Disagree, nor Agree (3)	Agree (4)	Strongly Agree (5)
Sustainable Practices	I integrate sustainability principles into my decision-making.					
	I support eco-friendly products and services.					
	I encourage others to adopt sustainable habits.					
	I can identify greenwashing and avoid misleading claims.					

8. Appendices

Self-evaluation Skills Test

- Assess your sustainability competencies across ten dimensions: environmental awareness, resource efficiency, sustainable practices, innovation for sustainability, collaboration and advocacy, climate adaptation and resilience, circular economy and waste management, carbon footprint reduction, green digital skills, and green leadership and policy.
- **Instructions:** Rate each statement on a scale of 1 to 5 (where 1 = Strongly Disagree, 5 = Strongly Agree).

Dimension	Statements	Strongly Disagree (1)	Disagree (2)	Neither Disagree, nor Agree (3)	Agree (4)	Strongly Agree (5)
Innovation for Sustainability	I propose creative solutions to reduce environmental impact.					
	I use technology to improve sustainability in processes.					
	I am open to learning new green technologies and methods.					
	I contribute ideas for circular economy initiatives.					

8. Appendices

Self-evaluation Skills Test

- Assess your sustainability competencies across ten dimensions: environmental awareness, resource efficiency, sustainable practices, innovation for sustainability, collaboration and advocacy, climate adaptation and resilience, circular economy and waste management, carbon footprint reduction, green digital skills, and green leadership and policy.
- **Instructions:** Rate each statement on a scale of 1 to 5 (where 1 = Strongly Disagree, 5 = Strongly Agree).

Dimension	Statements	Strongly Disagree (1)	Disagree (2)	Neither Disagree, nor Agree (3)	Agree (4)	Strongly Agree (5)
Collaboration and Advocacy	I participate in discussions about sustainability in my organization.					
	I advocate for environmental responsibility among peers.					
	I collaborate with others to achieve sustainability goals.					
	I engage in community or global sustainability initiatives.					

8. Appendices

Self-evaluation Skills Test

- Assess your sustainability competencies across ten dimensions: environmental awareness, resource efficiency, sustainable practices, innovation for sustainability, collaboration and advocacy, climate adaptation and resilience, circular economy and waste management, carbon footprint reduction, green digital skills, and green leadership and policy.
- **Instructions:** Rate each statement on a scale of 1 to 5 (where 1 = Strongly Disagree, 5 = Strongly Agree).

Dimension	Statements	Strongly Disagree (1)	Disagree (2)	Neither Disagree, nor Agree (3)	Agree (4)	Strongly Agree (5)
Climate Adaptation and Resilience	I understand strategies for adapting to the impacts of climate change.					
	I can identify risks related to extreme weather events in my work.					
	I support initiatives that build community resilience.					
	I consider long-term environmental risks in planning.					

8. Appendices

Self-evaluation Skills Test

- Assess your sustainability competencies across ten dimensions: environmental awareness, resource efficiency, sustainable practices, innovation for sustainability, collaboration and advocacy, climate adaptation and resilience, circular economy and waste management, carbon footprint reduction, green digital skills, and green leadership and policy.
- **Instructions:** Rate each statement on a scale of 1 to 5 (where 1 = Strongly Disagree, 5 = Strongly Agree).

Dimension	Statements	Strongly Disagree (1)	Disagree (2)	Neither Disagree, nor Agree (3)	Agree (4)	Strongly Agree (5)
Circular Economy and Waste Management	I promote reuse and repair over disposal.					
	I understand the principles of the circular economy.					
	I look for ways to reduce packaging waste.					
	I support business models that minimize resource extraction.					

8. Appendices

Self-evaluation Skills Test

- Assess your sustainability competencies across ten dimensions: environmental awareness, resource efficiency, sustainable practices, innovation for sustainability, collaboration and advocacy, climate adaptation and resilience, circular economy and waste management, carbon footprint reduction, green digital skills, and green leadership and policy.
- **Instructions:** Rate each statement on a scale of 1 to 5 (where 1 = Strongly Disagree, 5 = Strongly Agree).

Dimension	Statements	Strongly Disagree (1)	Disagree (2)	Neither Disagree, nor Agree (3)	Agree (4)	Strongly Agree (5)
Carbon Footprint Reduction	I measure or estimate my carbon footprint.					
	I take steps to reduce emissions in transportation and energy use.					
	I advocate for a low-carbon solutions proposal.					
	I understand the role of carbon offsetting and its limitations.					

8. Appendices

Self-evaluation Skills Test

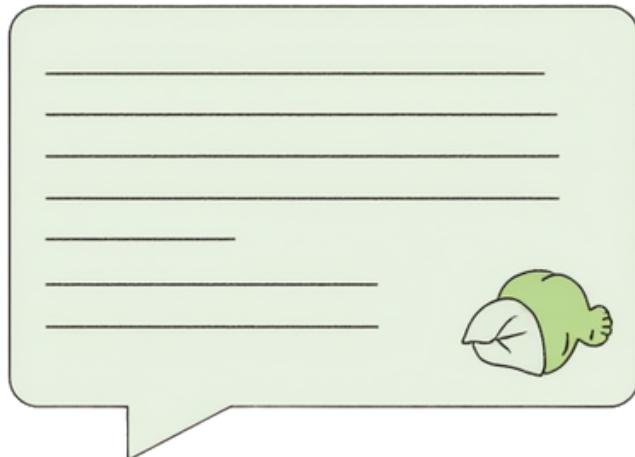
- Assess your sustainability competencies across ten dimensions: environmental awareness, resource efficiency, sustainable practices, innovation for sustainability, collaboration and advocacy, climate adaptation and resilience, circular economy and waste management, carbon footprint reduction, green digital skills, and green leadership and policy.
- **Instructions:** Rate each statement on a scale of 1 to 5 (where 1 = Strongly Disagree, 5 = Strongly Agree).

Dimension	Statements	Strongly Disagree (1)	Disagree (2)	Neither Disagree, nor Agree (3)	Agree (4)	Strongly Agree (5)
Green Digital Skills	I use digital tools to monitor and					
	I understand how technology can					
	I promote paperless					
	I am aware of the energy impact of					

8. Appendices

Self-evaluation Skills Test

- Assess your sustainability competencies across ten dimensions: environmental awareness, resource efficiency, sustainable practices, innovation for sustainability, collaboration and advocacy, climate adaptation and resilience, circular economy and waste management, carbon footprint reduction, green digital skills, and green leadership and policy.
- **Instructions:** Rate each statement on a scale of 1 to 5 (where 1 = Strongly Disagree, 5 = Strongly Agree).


Dimension	Statements	Strongly Disagree (1)	Disagree (2)	Neither Disagree, nor Agree (3)	Agree (4)	Strongly Agree (5)
Green Leadership and Policy	I understand the role of policy in driving sustainability initiatives.					
	I can influence decision-making to prioritize environmental goals.					
	I am proficient in implementing organizational sustainability strategies.					
	I am aware of environmental regulations and standards.					

- Score all your answers and look at the scoring sheet below.
- Scoring Sheet:**

Score Range	Interpretation
176-200	Excellent – You are a strong green skills ambassador.
132-175	Good – You have solid green skills, but can improve in some areas.
88-131	Moderate – You need to strengthen your sustainability competencies.
Below 88	Beginner – Start building awareness and practical green skills.

8. Appendices

- Read sustainability reports.
- Follow reputable environmental news sources.
- Take online courses on climate sciences.
- Learn about ISO management standards (particularly ISO 14001 and ISO 26000).
- Learn green design principles.
- Use brainstorming tools for eco-innovation.
- Join environmental NGOs or community groups.
- Study local climate risk assessments.
- Learn about cradle-to-cradle design.
- Learn about repair and reuse culture.

Practical Tips for Green Skills Improvement

- Learn about renewable energy and green technologies.
- Search for local businesses involved in circular economy activities.
- Calculate your carbon footprint.
- Explore green software solutions.
- Study global sustainability frameworks (UN SDGs, EU Green Deal).
- Take leadership courses focused on sustainability.
- Develop leadership skills to influence sustainability decisions.
- Participate in climate adaptation workshops and sustainability training.
- Promote paperless workflows and energy-efficient IT practices.
- Join local or global sustainability networks to share best practices.

References:

- European Green Deal: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
- European Climate Law: https://climate.ec.europa.eu/eu-action/european-climate-law_en
- Fit for 55: https://commission.europa.eu/topics/climate-action/delivering-european-green-deal/fit-55-delivering-proposals_en
- Circular Economy Action Plan: https://environment.ec.europa.eu/strategy/circular-economy_en
- EU Taxonomy: <https://ec.europa.eu/sustainable-finance-taxonomy/>
- Corporate Sustainability Reporting Directive (CSRD): <https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32022L2464>
- Strategy for Financing the Transition to a Sustainable Economy: https://finance.ec.europa.eu/publications/strategy-financing-transition-sustainable-economy_en
- Sustainable Finance Disclosure Regulation: https://finance.ec.europa.eu/sustainable-finance/disclosures/sustainability-related-disclosure-financial-services-sector_en
- Green Bonds Standard: https://finance.ec.europa.eu/sustainable-finance/tools-and-standards/european-green-bond-standard-supporting-transition_en
- Environmental Liability Directive: https://environment.ec.europa.eu/law-and-governance/environmental-compliance-assurance/environmental-liability_en
- LinkedIn (2025) "2025 Climate Talent Stocktake: Demand for green skills is on the rise. Can the workforce keep up?" Available at <https://www.linkedin.com/pulse/2025-climate-talent-stocktake-demand-green-skills-rise-efrem-by-cer-racnc/>
- LinkedIn (2024) "2024 Global Climate Talent Stocktake: Doubling green talent by 2050 to meet global demand" Available at <https://economicgraph.linkedin.com/content/dam/me/economicgraph/en-us/PDF/linkedIn-global-climate-talent-stocktake-sept-2024.pdf>
- Holding back climate progress: sustainability's critical skills gap. <https://climatechangecoaches.com/wp-content/uploads/2024/08/Holding-back-climate-progress-sustainabilitys-critical-skills-gap.pdf>
- Integrating sustainable development into economics curriculum https://www.sustainabilityexchange.ac.uk/integrating_sustainable_development_into_econom
- Outlook on Climate Disclosure Systems in 2025 and Response Strategies. https://www.kimchang.com/en/insights/detail.kc?sch_section=4&idx=31912
- Regulatory Climate Shift: Updates on the SEC Climate-Related Disclosure Rules. <https://corpgov.law.harvard.edu/2025/09/30/regulatory-climate-shift-updates-on-the-sec-climate-related-disclosure-rules/>

References:

- Top ESG Skills Every Consultant Must Master in 2025. <https://cse-net.org/top-esg-skills-consultants-2025/>
- How businesses can benefit from AI for carbon accounting. <https://www.zunocarbon.com/blog/ai-for-carbon-accounting>
- Digital transformation in supply chains: improving resilience and sustainability through AI, Blockchain, and IoT. <https://www.frontiersin.org/journals/sustainability/articles/10.3389/frsus.2025.1584580/full>
- Innovative Technologies for Sustainable Finance. https://www.bis.org/innovation_hub/projects/2024_cop28_techsprint.pdf
- The Green Skills Gap in Europe: A Critical Challenge for Sustainability. <https://cse-net.org/the-green-skills-gap-in-europe-a-critical-challenge-for-sustainability/>
- 25 ESG Regulations Investors Can't Ignore in 2025. https://insights.clarity.ai/hubfs/%5BeBook%5D%20Sustainable%20Finance%20Regulatory%20Outlook%202025/25%20ESG%20Regulations%20Investors%20Cant%20Ignore%20in%202025_Final.pdf
- 10 Key Sustainability Challenges to Tackle in 2025. <https://greenerinsights.com/10-key-sustainability-challenges-to-tackle-in-2025/>
- Sustainable Technology in 2025: Trends Driving a Greener Future. <https://dtpgroup.co.uk/insight/sustainable-technology-in-2025-trends-driving-a-greener-future/>
- ICAS glossary of sustainability terms. <https://www.icas.com/regulation-technical-resources/documents/icas-glossary-of-sustainability-terms>
- Glossary of Sustainable Terms. <https://www.british-business-bank.co.uk/business-guidance/guidance-articles/sustainability/glossary-of-terms#230548828-2664493086>
- Glossary of sustainability. <https://sustainable.org.nz/learn/tools-resources/glossary-of-sustainability/>

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."